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Frequency ratios and the perception
of tone patterns
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and
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We quantified the relative simplicity of frequency ratios and reanalyzed data from several studies
on the perception of simultaneous and sequential tones. Simplicity of frequency ratios accounted
for judgments of consenance and dissonance and for judgments of similarity across 2 wide range
of tasks and listeners. It alse accounted for the relative ease of discriminating tone patterns by
musically experienced and inexperienced listeners. These findings confirm the generality of pre-
vious suggestions of perceptual processing advantages for pairs of tones related by simple fre-

quency ratios.

Since the time of Pythagoras, the relative simplicity of
the frequency relations between tones has been consid-
ered fundamental to consonance (pleasantness} and dis-
sonance (unpleasantness) in music. Most naturally occur-
ring tones (e.g., the sounds of speech or music) are
complex, consisting of multiple pure-tone (sine wave)
components. Terhardt (1974, 1978, 1984) has suggested
that relations between different tones may be influenced
by relations between components of a single complex tone.
For single complex tones, including those of speech and
music, the frequency values (in hertz, or cycles per sec-
ond) of individual pure-tone components (called har-
maonics) are usually integer multiples of the fundamental
frequency, or first (fowest} harmonic. For example, 2
complex tone with a fundamental frequency of 100 Hz
consists of harmonics of 100, 200, 300, 400, S00 Hz, and
so on. Thus, relations between the lower and most read-
ily perceived harmonics (Plomp, 1964) can be represented
by small-integer frequency ratios such as 2:1 (between
200 and 100 Hz), 3:2, 4:3, 5:3, 5:4, and so on.

Historically, intervals (i.e., combinations of two tones)
formed by complex tones whose fundamental frequencies
are related by simple (i.e., small-integer) ratios have been
considered consonant, smooth, or pleasant; intervals with
complex (i.e., large-integer) ratios have been considered
dissonant, or unpleasant. Rameau (1722/1971) considered
the consonance of intervals with simple frequency ratios
to be a consequence of the simple ratios found among har-

This research was supported by grants from the Natural Sciences and
Engineering Research Council of Canada. We thank Laurel }. Trainor
for providing her data for reanalysis and Robert Crowder for his help-
ful comments on an earlier version of the manuscrnipt. Send reprint re-
quests to E. G. Schellenberg, Department of Psychology, University
of Windsor, Windsor, Ontarie, Canada N9B 3P4, orto §. E. Trehub,
Cenire for Research in Human Development, University of Toronto,
Ermdale Campus, Mississauga. Ontario, Canada LSL 1C6.

191

monics of a single complex tone. Currently, the degree
of perceived consonance is believed to result from both
sensory and experiential factors. Whereas sensory con-
sonance is constant across musical styles and cultures, mu-
sical consonance presumably results from Jearning what
sounds pleasant in a particular musical style.

Helmholtz (1885/1954) proposed that the consonance
of two simultaneous complex tones is a function of the
ratio between their fundamental frequencies—the simpler
the ratic, the more harmonics the tones have in common.
For two complex tones that stand in a ratio of 2:1, half
of the harmonics of the lower tone are present in the har-
monic series of the higher tone, while all of the harmonics
of the higher tone are present in the series of the lower
tone. For tones that stand in a ratio of 3:2, one third of
the harmonics of the lower tone are present in the series
of the higher tone, while half of the harmonics of the
higher tone are present in the series of the lower tone,
Thus, amplitude fluctuations and sensations of beating
arising from harmonics that are close but not identical in
pitch are less likely between tones related by simple fre-
quency ratios (more common harmonics) than between
tones related by more complex ratios (fewer common
harmonics).

Contemporary accounts of consonance and dissonance
(Kameoka & Kuriyagawa, 19692, 1969b; Plomp &
Levelt, 1965) have incorporated the notion of critical
bands into the earlier formulation (Helmholtz,
1885/1954). Critical bands are presumed to function like
auditory filters. Each tone interacts with other tones within
a certain range of surrounding frequencies (its critical
band); beyond that range (i.e., when tones have nonover-
lapping critical bands), such interactive effects are mini-
mal. Thus, simultaneous pure tones that are proximate
(but not identical) in pitch have overlapping critical bands,
resulting in beating and the perception of dissonance, or
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roughness (Kameoka & Kuriyagawa, 1969a; Plomp &
Levelt, 1965). The most dissonant interval occurs at about
a quarter of a critical bandwidth (Plomp & Levelt, 1965).
The width of the critical band is a constant frequency ra-
t1e (between two and three semitones) for tones above
500 Hz; under 500 Hz. the critical band becomes wider
(in number of semitones) as frequency decreases (Plomp
& Levelr, 1965). Thus, intervals that are consonant in the
mid- to upper ranges {e.g., intervals of three and four
semitones) may be dissonant in the lower ranges; in musi-
cal compositions, these lower intervals are avoided (Huron
& Sellmer, 1992: Plomp & Levelt, 1965). In sum, the
consonance of simultaneons pure tones is considered a
function of frequency distance (1.¢., whether or not criti-
cal bands overlap) and absolute frequency, independent
of the simplicity of frequency ratios.

For sirmultaneous complex tones, dissonance occurs
when the critical bands of adjacent harmonics overlap but
are not identical. Thus, complex tones related by simple
frequency ratios are less likely to cause dissonance than
those related by more complex ratios, not because of the
simplicity of frequency ratios per se, but because the crit-
1cal bands of adjacent harmonics are less likely to gener-
ate interference. In the case of successive tones, effects
of ratio simplicity are thought to result primarily from
exposure to a specific musical culture or style, illustrat-
ing the phenomenon of musical as epposed to sensory con-
sonance. In the context of musical consonance, terms such
as tonal affinity, compatibility, and stability are often used.

Because the degree of consonance/dissonance (sensory)
is largely attributed to overlapping critical bands, the
prevailing view is that the relation between frequency ra-
tios and musical intervals is arbitrary, or coincidental
{(e.g.. Dowling & Harwood, 1986). Indeed, judgments
of dissonance have been found to be independent of ratio
simplicity (Plomp & Levelt, 1965}, as have judgments
of similarity (Kallman, 1982). Moreover, the discrimi-
nation of changes in melodic (sequential) intervals by mu-
sically untrained listeners 15 also reported to be indepen-
dent of the relative simplicity of frequency ratios (Burns
& Ward, 1978).

Trehub and her colleagues (Cohen, Thorpe, & Trehub,
1987, Schellenberg, 1994; Schellenberg & Trehub, in
press: Trainor & Trehub, 1993a, 1993b; Trehub, Thorpe,
& Trainor, 1990) contend, however, that tones related
by simple frequency ratios are inherently easier to pro-
cess than tones related by more complex ratios. They
found processing advantages for simple frequency ratios
in a task that required musically untrained adults and
young children to detect changes in sequences of pure
tones, where overlapping critical bands were not a factor
{Schellenberg, 1994). They also found that discrimina-
tion accuracy improved with the increasing ratio simplicity
of the patterns (Schellenberg & Trehub, in press).

If simple frequency ratios have natural processing ad-
vantages (Schellenberg, 1994; Schellenberg & Trehub,
in press), they shouid predominate in musical scales cross-
culturally. Indeed. octaves. which exemplify the very sim-

ple ratio of 2:1, are found in the mustc of virtually all
cultures (Dowling & Harwood, 1986; Lerdahl & Jack-
endoff. 1983). Moreover, mtervals with ratios of 3:2
(fifths) and 4.3 (fourths) have been identified in many cul-
tures (Sachs, 1943}, often functioning as stable intervals
or points of resolution (Meyer. 1956).

In the present paper, we explore the perceptual conse-
quences of ratio simplicity by examining interval-perception
data from numerous investigators. representing a wide va-
riety of listeners, listening contexts, and experimental
tasks. Just as grammatical simplicity, defined linguisti-
cally, need not imply psychological simplicity, ratio sim-
plicity, defined mathematically, need not have psycho-
logical consequences. The hypothesis under consideration
is that simple frequency ratios confer perceptual process-
ing advantages relative to complex ratios. Specifically,
simple frequency ratios should facilitate the processing
of patterns comprised of pure or complex tones in the con-
text of melodic (sequential) or harmonic (simultaneous)
intervals. Moreover, tones related by simple frequency
ratios should be perceived as more consonant, or com-
patible, than tones related by more complex frequency
ratics. To rule out exposure to Western music as the prin-
cipal explanatory factor, these effects should be demon-
strable with listeners from widely different musical cul-
tures. The effects should be evident, moreover, relatively
early in life. Finally, the hypothesized effects should be
obligatory—apparent in musical as well as nonmusical
contexts.

QUANTIFYING THE SIMPLICITY
OF FREQUENCY RATIOS

Our index of ratio simplicity, essentially a modification
of previous indexes (Levelt, van de Geer, & Plomp, 1966;
van de Geer, Levelt, & Plomp, 1962), is the reciprocal
of the natural logarithm of the sum of the two integers in
a frequency ratio in its simplest form (i.c., no common
factors in the integers). Thus, the simplicity value for ra-
tio X:Y is [log.(X+Y)1™. In the special case of simulta-
neous pure tones presented in phase, the index represents
the inverse of the logarithm of the total numbet of com-
plete cycles of sine waves in the period common to both
tones. Table 1 presents all intervals from 0 to 12 semi-
tones that are multiples of semitones, their frequency ra-
tios, and the calculation of the ratio-simplicity values.
The frequency ratios are based on just tuning, a system
in which notes are mned to form small-integer ratios with
the tonic of the scale (the tone called dop).

Burns and Ward's (1982, Table 1) presentation of fre-
quency ratios for justly tuned intervais was the source of
ratios for the index (intervals were limited to integer mul-
tiples of semitones). Frequency ratios of intervals between
the tonic and other tones of the Western major scale are
relatively consistent across authors (octaves as 2:1, fifths
as 3:2, etc.). but those of other intervals tend to vary con-
siderably (Burns & Ward, 1982). For example, the tri-
tone is sometimes considered to have a ratio of 64:45 in-
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Table 1
Interval Size (in Semitones) With Corresponding Interval Name,
Justly Tuned Frequency Ratio, Sum of Integers in the Ratio,
Logarithm of the Sum, and Inverse of the Logarithm

Interval Frequency Sum of Logarithm  Reciprocal of

Size Interval Ratio Integers of Sum Logarithm
¢ unison 1:1 2 0.693 1443

1 minor second 16:15 31 3434 0.291

2 major second 9:8 17 2.833 0.353

3 mupor third 63 11 2.398 0.417

4 major third 5:4 9 2.197 0455

5 perfect fourth 43 7 1946 0.514
4] tritone 45:32 77 4.34 0.230

7 perfect fifth 3:2 5 1.60% 0.621

8 mumor sixth 85 13 2.565 0 390

9 major sixth 5:3 8 2079 0.481
10 minor seventh 16:9 25 3.219 0.311
11 major seventh 15:8 23 3.135 0.319
12 octave 2.1 3 1.099 0.910

Note—The reciprocal of the logarithm of the sum of integers is used as the index of

simplicity of frequency ratios.

stead of the more conventional 45:32. For instances in
which Burns and Ward (1982) provide two different ra-
tios for a single interval, we selected the ratio that mini-
mized deviation in size from its equai-tempered counter-
part. {In the equal-tempered scale, an octave is divided
into 12 equal steps, each an equal-tempered semitone.
Thus, all equal-tempered intervals are integer multiples
of equal-ternpered semitones. Except for the octave, equal-
tempered intervals are slightly mistuned from exact sim-
ple ratios.) In the case of the tritone, where both ratios
are equidistant from the equal-tempered interval, we se-
lected the smaller integer ratio (45:32 rather than 64:45).
Although these decision rules are arbitrary, the ratios on
which the index is based are widely used for justly tuned
intervals as well as for small-integer approximations to
equal-tempered intervals, and they are identical to those
reported by Krumhansl (1990 for intervals from 0 to 12
semitones.

The index is formulated from justly tuned intervals, but
the resulting values are assumed to apply to intervals
slightly mistuned from exact ratios, including equal-
tempered intervals. This assumption gains credence from
the finding that performing musicians often produce small
discrepancies in interval size (Rakowski, 1990), which
listeners still perceive as being ““in tune’” (Burns & Ward,
1982; Ward, 1970). Only one simplicity value is assigned
to each interval, despite the possibility of justly mned in-
tervals with the same number of semitones having more
than one ratio, depending on their position in the scale.
The index can also be extended to intervals larger than
12 semitones {one octave} by doubling the first integer
in the ratio of the mterval 12 semitones smaller. For ex-
ample, a major ninth {14 sermitones) is an octave larger
than 2 major second (2 semitones); its frequency ratio is
18:8, which can be reduced to 9:4, and its ratio-simplicity
value is [log.(9+4)]™ = .391.

As can be seen in Figure 1, which presents simplicity
values for frequency ratios as a function of interval size

and Western music-theoretic classifications of consonance/
dissonance, dissonant intervals have lower simplicity
values than consonant intervals. Similarly, imperfect con-
senances have relatively lower values than perfect con-
sonances. Intervals of 0 and 12 semitones (unison and
octave, respectively) have the highest simplicity values
(i.e., the simplest ratios), whereas the interval of 6 semi-
tones (the tritone) has the lowest value (i.e., the most com-
plex ratio). The simplicity values associated with these
particular intervals are consistent with Narmour’s (1992)
suggestion that unisons, octaves, and tritones are inher-
ently special, or *‘peculiar,”” with correspondingly dis-
tinctive perceptual properties. For example, Narmour

14 . perfect consgnance

m imperlect consgnance

dissonance |

simphcily of frequency ratio

semiiones

Figure 1. Quantified values of the simplicity of frequency ratios
as a function of interval size (semitones) and Western music-theoretic
classifications of consonance and dissonance. Higher values cor-
respond to greater simplicity.
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(1990, 1992) considers the tritone to be essentially am-
biguous, having the implications of either a small or a
large interval, depending on its context, Similarly, music
theory designates the tritone as an augmented fourth or
a diminished fifth; both designations are considered un-
stable, requiring resolution to more stable intervals (Ald-
well & Schachter, 1989).

RELATION TO OTHER MEASURES
OF RATIO SIMPLICITY

How does our index relate to other measures of the sim-
phicity of frequency ratios? Using the larger of the two inte-
gers in a frequency ratio as their measure, van de Geer
et al. (1962) also achieved mathematical simplicity and ap-
plicability to both pure and complex tones presented simul-
taneously or sequentially. There are notable differences,
however. One is that van de Geer et al. calculated com-
plexity rather than simplicity. Another is that van de Geer
et al.’s measure vielded the same value (16) for justly
tuned minor seconds and minor sevenths, compared with
our value of .291 for the minor second and .311 (i.e..
greater simplicity) for the minor seventh. Similarly, major
thirds and sixths would be equally simple (a value of 5)
for van de Geer et al., but somewhat different for our
index (.435 for the major third vs. .481 for the major
sixth). Despite the greater differentiation of our index.
the values from the two measures were found to be highly
but negatively correlated {r = —.829, N = 23, p <
L0001, for the 23 intervals tested by van de Geer et al.,
1962).

The only other direct measure of ratio simplicity, that
of Levelt et al. {1966), is almost perfectly (negatively)
correlated with our index for intervals with the same mean
frequency. Indeed, for the I5 stimulus intervals presented
by Levelt et al., all of which had a mean frequency of
500 Hz, the two indexes yield a correlation coefficient
of r = —927 (N = 15, p < .0001). Our index is con-
siderably more useful, however, in that it is applicable
to comparisons between intervals that are not equated for
mean frequency (e.g., intervals with the same lower tone,
say middle C). Moreover, because Levelt et al. computed
the common logarithm (base 10) of the frequency (hertz)
of the first harmonic common (o two compiex tones, the
resulting index is not directly applicable to pure tones.

Mathematical estimates of the sensory consonance/
dissenance of two simultaneous complex tones can be con-
sidered indirect indexes of the simplicity of frequency ra-
tios. (Sensory consonance is greater for simultanecus com-
plex tones related by simple frequency ratios than by more
complex frequency ratios, as noted above.) We examined
associations between our index and Helmholtz's {1885/
1954) measure of the degree of roughness, or dissonance,
between two simultaneous complex tones. For the justly
tuned intervals in Table 1, the simplicity values were
negatively correlated with the roughness values (r =
—.559, N = 13, p < .05). Standardized justly tuned
roughness values and ratio-simplicity values as a func-
tion of interval size are shown in Figure 2 (with the sign
of the standardized ratio-simplicity value reversed for put-
poses of comparisen). The two values deviate most for
the unison (0 semitones) and the minor second (2 semi-

slangargized valuos
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Figure 2. Standerdized simplicity values of frequency ratios and standardized roughness values
(Helmboltz, 1885/1954) for justly tuned and equal-tempered intervals as a function of interval size.
For comparison purpeses, the sign of the standardized simplicity values has been changed. Thus,
higher values correspond to greater complexity and greater roughness.



tones), which have considerably greater roughness values.
Helmholtz (1885/1954) also calculated roughness values
for equal-tempered intervals, which are mistuned from
exact frequency ratios by up to 16% of | semitone. We
also found these roughness values and our ratio-simplicity
values (based on exact frequency ratios) to be negatively
correlated (r = —.576, N = 13, p < .05). As can be
seen in Figure 2, standardized equal-tempered values for
roughness and simplicity are closely related for all inter-
vals except for the unison and the minor second, as they
are for justly tuned intervals. The finding of similar as-
sociations between simplicity and roughness values for
both justly tuned and equal-tempered intervals supports
the assumption that the values generated by our index of
ratio simplicity are not uniquely tied to one tuning system.

Hutchinson and Knopoff (1978) incorporated the con-
cept of critical bandwidth into their computation of the
dissonance of simultaneous complex tones {see also
Kameoka & Kuriyagawa, 1969b). They calculated values
for 1,500 intervals: 25 equal-tempered intervals ranging
from 0 semitones (unisons) to 24 semitones (two octaves)
at 60 different pitch positions for each interval (the lower
tone of each interval ranged from C,, or 32.7 Hz, to By,
or 987.8 Hz).! Overall, smaller intervals had higher dis-
sonance values than larger intervals {smaller intervals are
more likely to have overlapping critical bands), and in-
tervals with a lower mean frequency had higher dis-
sonance values than intervals with a higher mean fre-
quency (for frequencies under 500 Hz, critical bandwidth
increases in number of semitones as frequency decreases).
‘We found the Hutchinson and Knopoff dissonance values
to be negatively correlated with our simplicity values (r =
—.406, N = 1,500, p < .0001). A multiple regression
analysis was used t0 examine the predictive strength of
the ratio-simplicity valuves, while controlling for interval
size and mean pitch of interval (by including a predictor
variable for both). The result was a highly significant fit
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to the dissonance values (multiple R = .795, N = 1,500,
p < .0001), with all three predictor variables making sig-
nificant independent contributions (ps < .0001).

JUDGMENTS OF CONSONANCE
AND DISSONANCE

As a preliminary test of the generality of ratio simplic-
ity as an explanatory construct, we examined the associ-
ation between the simplicity of frequency ratios and judg-
ments of consonance and dissonance. If simple frequency
ratios confer processing advantages, then intervals with
simpler ratios may be judged more consonant (i.¢., more
compatible, pleasant, smooth, etc.) than intervals with
more complex ratios. The effect, if evident, should be
present for patterns of pure or complex tones, and for
listeners with or without musical training.

We compiled data on judgments of consonance and dis-
sonance from several studies. For each study, or group
of studies in the case of research preceding 1918, judg-
ments of consonance and dissonance were rank ordered
and compared with the rank ordering of ratio-simplicity
values for intervals from 1 to 12 semitones. These values
are presented in Table 2 together with rank-order corre-
iations and probability values. The criteria for consonance
and dissonance varied from study to study, as did the type
of tones (pure or complex).

Malmberg (1918) reviewed 10 historical treatments of
consonance and dissonance, from the 13th century to the
early 20th century. For each of the 10 studies, he ranked
the intervals from most to least consonant (Malmberg,
1918, Table 1, p. 103). The composite rank order of judg-
ments presented in Table 2 was based on Krumhansl’s
{1990, Table 3.1, p. 57) averages of the ranks across the
10 studies. Malmberg also presented all possible pairs of
the 12 harmonic (simultaneous) intervals (by means of pi-
ano or turing fork) to musically trained listeners, who

Table 2
Rank Order of Ratio-Simplicity Values and Consonance Judgments Across Various Studies and Subject Groupings

Interval Size (Semitones)

2 7 5 9 4 3 & 2 11 10 1 6
Ratro-Simplicity Rank
Study Subjects 1 2 3 5 6 7 8 9 10 11 12 r P

Pre-1918 summary 1 2 3 5 7 6 0 11 9 12 8§ 85 <.0001
Maimberg (1918)

Puano tramed 1 2 5 3 4 7 6 10 11 9 12 8 881 <.0005

Tuning fork trzuned 1 2 4 3 5 7 6 1 10 9 12 8 .88 <.0005
Guemnsey (1928)

Smoothness untrained 1 3 2 5 4 6 8 11 10 7 12 9 881 «<.0005
mod. trained 1 2 5 4 3 7 8 11 10 6 12 9 8% <00
trained 12 3 4 5 7 6 10 11 8 12 9 916 <.0001

Pleasantness untrained 4 5 3 1 2 6 7 1 W0 8 12 9 .9 <.005
mod. trained g 6 3 2 F 5 4 10 11 7 012 9 513 <.
tramed 1m w 2 1 3 4 5 g 9 6 12 7 203 n.§

Butler & Daston untrained

(1968) US.A 5 2 6 4 1 8 3 7011 10 12 9 M <0
Japan (West.) 4 1 2 6 3 7 35 8 12 10 11 9 853 < 0005
Japan (Trad) 5 3 2 7 1 & 4 8 12 10 11 9 755 <« 005

Note—mod. = moderately; West. = Western; Trad. = traditional.
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were asked to judge which interval was more smooth,
pure, and well blended. He calculated two composite
scores (one for each timbre), from the three judgments
for each interval, on the basis of how many times it was
chosen over the other 11 intervals. The rank orders of
these scores are presented separately for both timbres (see
Table 2).

In an attempt to determine whether Malmberg's (1918)
findings were independent of musical training, Guernsey
(1928) conducted a similar experiment with listeners who
wete musically trained, moderately trained, or untrained.
She presented (with pure-tone resonators) the 12 inter-
vals used by Malmberg to the three groups of listeners.
in one experiment, the listeners provided smoothness
judgments; in another, they provided pleasantness judg-
ments. The rank orders of intervals, based on smooth-
ness and pleasantness judgments, are listed in Table 2 for
each group of subjects.

Butler and Daston (1968) examined the generality of
Malmberg’s (1918) results across cultures by testing col-
lege students from the United States and Japan. The
Japanese students were subdivided into two groups: those
who preferred Western music and those who preferred
traditional Japanese music. All the listeners made pair-
wise preference judgments of the 12 intervals, which were
presented on an organ (complex tones). The rank orders
of interval preferences for each group are listed in
Table 2.

Rank-order (Spearman) correlations (Table 2) show
remarkable agreement between interval judgments and the
relative simplicity of frequency ratios across the various
studies and subject groupings. In fact, strong associations
prevailed across different culturat backgrounds, musical
experience, judgment criteria (preference or smoothness),
and tones (pure or complex). Ratio simplicity was less
successful in predicting pleasantness judgments (Guern-
sey, 1928), particularly for listeners with more musical
training. This finding may reflect the influence of Western
harmonic structute (i.¢., the predominance of thirds and
sixths with their moderately simple frequency ratios) on
listeners with more musical training. Thus, extensive
training in Western music may increase culturally biased
responding, thereby decreasing effects of ratio simplic-
ity. Higher evaluations of moderately simple frequency
ratios (i.e., imperfect consonances) compared with very
simple frequency ratios (i.e., perfect consonances) have
also been reported by van de Geer et al. (1962).

Krumhansl and Kessler (1982) required musically
trained listeners to rate how well a test tone fit with a mu-
sical key, establishing the key by playing a scale, chord,
or cadence (a combination of chords signaling the end of
a musical phrase). Because musical keys have a tonic note,
which acts as a perceptual reference point, such ratings
also reflect the consonance of the interval between the
tonic and the test tone, To minimize the influence of pitch
distance. Krumhans! and Kessler used special tones with
poorly defined pitch height (see Shepard, 1964). They de-
rived two hierarchies of stability values (a continuous mea-

sure)—one for tones in major keys, and the other for tones
in minor keys. Ratio simplicity was a significant predic-
tor of the hierarchy of values for both major and minor
keys (major keys, r = .862, N = 13, p < .0005; minor
keys, r = .790, N = 13, p < .005). Thus, regardiess
of whether a musical key is in a major or minor mode,
tones are perceived to fit better in the key when they form
simple frequency ratios with the tonic of that key than
when they form more complex ratios. Moreover, the as-
sociation between major and minor hierarchy values was
weaker (r = .651, N = 13, p < .05) than the associa-
tion of either hierarchy with the ratio-simplicity index.

DISCRIMINATION OF TONE SEQUENCES

The current claim of processing advantages for simple
frequency ratios arose from performance on tasks in which
listeners were required to discriminate changes in interval
size {Schellenberg, 1994; Schellenberg & Trehub, in press;
Trainor & Trehub, 1993a, 1993b). Changes from simple
ratios to more complex ratios were found to be more readily
detectable than changes from complex to simpler ratios.
This pattern of asymmetries implies that intervals with
simple ratios are encoded more efficiently than are inter-
vals with more complex ratios, providing a differentially
effective basis for the detection of changes. Similar asym-
metries have been reported for the detection of changes
to conventionally structured and unconventionally struc-
tured linguistic and nonlinguistic patterns (Bharucha, Ol-
ney, & Schnurr, 1985; Bharucha & Pryor, 1986).

Adult and Child Listeners

Schellenberg and Trehub’s (in press) listeners, adults
with little musical training, heard a standard five-tone pat-
tern (two component tones in an alternating sequence)
repeating in transposition (same frequency ratio between
component tones, different absolute frequencies), and
were asked to indicate when a comparison pattern (dif-
ferent frequency ratio, different absolute frequencies) was
substituted for the standard. The standard and compari-
son patterns were comprised of perfectly consonant in-
tervals (frequency ratio of 3:2 or 4:3), imperfectly con-
sonant intervals ¢5:4 or 8:5), or a dissonant interval
(45:32). The effect of ratio simplicity was graded; our
reanalysis of the data showed that performance improved
as the ratio between tones in the standard pattern became
simpler (r = .486, N = 40, p < .005) and as the ratio
between tones in the comparison pattern became more
complex {r = —.536, N = 40, p < .001).

Schellenberg (1994) found comparable perceptual asym-
metries as a function of ratio simplicity when they vsed
a different methodology (same/different) with adults and
6-year-old children. Performance was more accurate when
the standard interval (presented first) had a simple fre-
quency ratio (2:1, 3:2, 4:3) and the comparison interval
(presented second) had a more complex ratio (15:8, 32:13,
45:32) than when the simple ratio followed the complex
ratio. The processing advantage for simple frequency



ratios was evident even in 6-year-old listeners with little
or no musical training. For all the listeners, moreover,
performance did not differ from chance levels when the
standard interval had a complex ratio. These results are
consistent with the view that tones related by simple ra-
tios are inherently easier to process than tones related
by more complex ratios, Comparable findings with in-
fant listeners would constitute stronger evidence in this
regard.

Infant Listeners

If processing advantages associated with simple fre-
quency ratios are largely independent of musical encul-
turation, then such advantages should be evident in in-
fancy. An analysis of relevant infant discrimination data
was made possible by the cooperation of Trainor (1991),
who tested 40 infants 9 to 11 months of age with a proce-
dure similar to that used by Schellenberg and Trehub (in
press). Trainor’s (1991, chap. 3) infants were trained to
turn their heads toward a loudspeaker when a compan-
son pattern was substituted for the standard. One of her
standard patterns exemplified a structure considered basic
to Western tonal music (the major triad), consisting of
the first, third, and fifth notes of the major scale, ascend-
ing and descending (e.g., Ca-Es~G.-E:-C.). The other
standard pattern {.g., Co~E4~GY4-E.—C,, the augmented
triad) was similar in configuration (rise-fall contour) and
pitch range, but much less conventional in structure—its
note set did not belong to any single major scale. Com-
patisan patterns were formed by displacing the highest
tone of the pattern upward or downward (from an exact
transposition) by a semitone. In line with earlier findings
(Cohen et al., 1987), Trainor found superior infant dis-
crimination when the standard pattern was convention-
ally structured. In further research (Trainor & Trehub,
1993b), the source of the processing advantage was iden-
tified as the relation between the low and high tones (e.g.,
C, and G,). Sensitivity to the contour of tone sequences
(Chang & Trehub, 1977; Ferland & Mendelson, 1989;
Trehub, Bull, & Thorpe, 1984; Trehub, Thorpe, & Mor-
rongieflo, 1985, 1987) may have drawn the infants’ at-
tention to the Jocus of contour change (the high tone) as
well as to the first and last tones (the low tones), enhanc-
ing their sensitivity to relations between the low and high
tones of Trainor’s (1991) patterns.
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We reanalyzed Trainor's (1991) data as a function of
the simplicity of frequency ratios between low and high
tones of the standard and comparison patterns. Frequency
ratios are listed in Table 3 for each of Trainor’s four con-
ditions. Mean d’ scores and standard deviations are also
presented. As predicted, the infants performed better when
the low and high tones of the standard pattern were re-
Jated by a simple ratio (perfect fifth, ratio of 3:2) than
by a more complex ratio (minor sixth, ratio of 8:5)
[¢(38) = 3.80, p < .001]. Performance also improved
as the ratio between the low and high tones of the com-
parison pattern became more complex; the correlation be-
tween the infants’ discrimination scores and the ratio sim-
plicity of the comparison pattern was r = —.737 (N =
40, p < .0001). If performance varied as a function of
the simplicity difference between the standard and com-
parison patterns, then the infants should have been most
accurate on the simplest standard and most complex com-
parison pattern (i.e., major triad-downward condition),
least accurate on the most complex standard and simplest
comparison pattern (i.¢.. augmented triad-downward con-
dition), and intermediate on the other two conditions. As
can be seen in Table 3, the pattern of discrimination scores
is consistent with this prediction. Indeed, we found the
infants® performance to be a function of the difference
in ratio-simplicity values between standard and compari-
son patterns (r = .670, N = 40, p < .0001). Thus, the
pattern of results for infant listeners is remarkably con-
sistent with that reported for children and adults (Schellen-
berg, 1994; Schellenberg & Trehub, in press), suggest-
ing that advantages for simple over more complex ratios
are independent of musical enculturation.

JUDGMENTS OF SIMILARITY

1f the discriminability of intervals is related to differ-
ences in their ratio simplicity, then the perceived simi-
lariry of intervals may be affected by similarities in ratio
simplicity. It is unclear, however, whether tones perceived
to be compatible (i.e., the component tones of intervals
with simple ratios) would also be perceived as more sim-
ilar than tones perceived to be incompatible (i.e., the com-
ponent tonies of intervals with complex ratios). In any case,
pitch distance is likely to play a critical role, with listeners
perceiving tones closer in pitch as more similar than tones

Table 3
Mean Discrimination Scores (d') and Standard Deviations as a Function
of the Frequency Ratio Between Low and High Tones of
Standard and Comparison Patterns (Trainor, 1991)

Frequency Ratio
Condution Standard  Comparison Mean 4 5D
Major-upward change 3.2 8:5 050 023
Major-downward change 32 45:32 0.39 0.43
Augmented-upward change 85 5:3 0.47 0.51
Augmented-downward change 8:5 32 -0 28 0.38
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further apart, and intervals nearer in size (pitch distance
between tones) as more similar than intervals with greater
size differences.

Similarity Between Tones

Krumhansl (1979, Experiment 1) presented musically
trained adults with a key-defining tonal pattern (i.e., an
ascending or descending C-major scale or a C-major
chord) followed by two successive test tones taken from
the set of 13 equal-tempered tones in the same octave as
that for the key-defining pattern. Listeners rated how sim-
ilar the first test tone was to the second (in the musical
key suggested by the context) by providing ratings for each
pair of tones (78 pairs) presented in both possible orders
(a total of 156 ratings). If the simplicity of frequency ra-
tios influenced highly trained listeners, then higher rat-
ings would be expected for tones related by simple ratios
(e.g., perfect fifths: C,-G,, G,-C,, CH4-GH., G8,-Cl,,
etc.) than for tones related by more complex ratios (e.g.,
tritones: E,~Afl,, A#.-E,, F,-B,, B.-F., etc.), irrespec-
tive of the influence of the tonal context, the order of the
test tones, and differences in the relative stability between
test tones in the established context. Because Krumhansl’s
(1979) experiment was designed to tap the influence of
a well-defined tonal context (i.e., the key of C major),
it is a conservative test of the ratio-simplicity hypothesis,
which is independent of tonal context.

We also examined variation in the similarity ratings as
a function of pitch distance and ratio simplicity. Follow-
ing Krumhansl (1979, Figure 1), pairs of identical tones
(i.e., the 13 possible unisons in an octave range) were
assumed to have a maximal similarity value of 7 (increas-
ing the total number of intervals to 169). As expected,
listeners gave lower similarity ratings to tones that were
more distant in pitch (in number of semitones; r = —.502,
N = 169, p < .0001). Ratio-simplicity values were
strongly associated with similarity ratings for pairs of
tones (r = .714, N = 169, p < .0001), indicating that
tones related by simpler ratios were judged to be more
similar than tones related by more complex ratios. In a
multiple regression analysis that controlled for effects of
pitch distance, similarity ratings were modeled as a func-
tion of four predictor variables: (1) ratio simplicity be-
tween the two test tones, (2) ratio simplicity between the
first test tone and the tonic, (3) ratio simplicity between
the second test tone and the tonic, and (4) pitch distance
in semitones between the two test tones. The fit of the
model was highly significant (multiple R = .846, N =
169, p < .0001), and all four predictors made signifi-
cant independent contributions (ps < .0001). The results
from the multiple regression analysis are provided in Ta-
ble 4 (psychoacoustic model). Similarity ratings were, in
general, higher when frequency ratios were simpler as
opposed to more complex, and they were higher when
the test tones were closer in pitch. Thus, two psycho-
acoustic factors, ratio simplicity and pitch distance, pro-
vide a clear and parsimonious explanation of the varia-
tion in Krumhansl’s (1979) results.

Table 4
Three Models Fit to Similarity Data From Krumhansl
(1979, Table 2)

Predictor Variable df F 14

Psychoacoustic Model
(Multiple R = .846, N = 169, p < .0001)

Frequency ratio

Between test tones 1 169.0 < .0001
Between first test tone and tonic 1 16.19 < .0001
Between second test tone and tonic 1 38.92 < .0001
Pitch distance between test tones 1 94.20 < .0001
Music-Theoretic Model

(Multiple R = .845, N = 169, p < .0001)
Tonality of first test tone 2 22.28 < .0001
Tonality of second test tone 2 57.04 < .0001
Tonality of first X second test tone 4 33.56 < .0001
Pitch distance between test tones 1 158.4 < .0001

Combined Model

(Multiple R = 930, N = 169, p < .0001)
Tonality of first test tone 2 32.38 < .0001
Tonality of second test tone 2 95.29 < .0001
Tonality of first X second test tone 4 18.54 < .0001
Pitch distance between test tones 1 193.4 < .0001
Frequency ratio between test tones 1 176.5 < .0001

Krumhans!’s (1979) explanation was primarily based
on the stability of test tones within a musical key. Each
test tone was considered to be in one of three tonal cate-
gories: the tonic triad of the implied key (stable tones),
the scale of the implied key but not the tonic triad (mod-
erately stable tones), and nondiatonic (unstable) tones.
Because the order of the test tones and pitch distance
also influenced listeners’ ratings, Krumhansl’s (1979)
“‘model’’ of the variation in her data was assumed to be
a 3 %3 analysis of covariance, with three levels of the tonal
category of the first test tone, three levels of the tonal cat-
egory of the second tone, and a covariate representing
the distance in pitch between test tones. Results from an
analysis based on this model are provided in Table 4
(music-theoretic model). The resulting multiple R was
.845 (N = 169, p < .0001), virtually identical to the
psychoacoustic model in goodness of fit. Thus, the per-
formance of musically trained listeners on a musically
relevant task can be explained as effectively with psycho-
acoustic factors as it can with culture-specific, music-
theoretic factors.

The psychoacoustic model predicts that, in general,
tones closer in pitch and those related by a simple ratio
will be rated as more similar than tones more distant in
pitch and those related by a more complex ratio. By con-
trast, the music-theoretic model accounts for the data by
way of pitch distance and the stability of each test tone
in relation to the established key. The addition of a pre-
dictor variable (to the music-theoretic model) for ratio
simplicity between test tones significantly improved the
fit to the data [F(1,158) = 176.5, p < .0001], generat-
ing a multiple R of .930 (N = 169, p < .0001). Results



from this analysis are shown in Table 4 {combined model).
Thus, tones related by simple ratios were judged to be
more similar than tones related by more complex ratios,
even with the influence of toral harmonic factors and pitch
distance held constant. Effects of ratio simplicity above
and beyond those assoctated with music-theoretic con-
structs provide compelling evidence of the influence of
frequency ratios on the perception of tone patterns.

Similarity Between Intervals

If simplicity of frequency ratios functions as a psycho-
acoustic primitive, then it may contribute to the perceived
similarity between intervals, Levelt et al. (1966) had
listeners judge similarities among 15 different complex-
tone intervals and 15 different pure-tone intervals. Multi-
dimensional scaling revealed a three-dimensional solution
for complex-tone judgments. The coordinates of two di-
mensions formed a U-shaped curve corresponding to dis-
tance in pitch (interval size). The coordinates of the third
dimension of the solution were associated with ratio sim-
plicity (r = .826, N = 15, p < .0003), indicating its
influence on similarity judgments, as proposed above.
For complex tones, then, judgments of interval similar-
ity were based on pitch distance (interval size) and ratio
simplicity, as were judgments of tone similarity (Krum-
hansl, 1979). In the three-dimensional scaling solution
for pure-tone intervals, no dimension was significantly
correlated with ratio simplicity. Coordinates from two
dimensions formed the same U-shaped curve based on in-
terval size that was found with complex tones. However,
- the third dimension indicated the presence of reference
points associated with simple frequency ratios, with the
perfect fourth (4:3) and major third (5:4) at a Jocal min;-
mum, the perfect fifth (3:2) at a local maximum, and the
octave (2:1) at another local minimum (Levelt et al.,
1966, Figure 2). The coordinates of this dimension could
not be predicted by our index because intervals with sim-
ple ratios had either very high or very low values. Never-
theless, effects of ratio simplicity on similarity judgments
for pairs of intervals (pure or complex tones) or tones
confirm the applicability of the construct to perceived
similarity.

DISCUSSION

We have reported effects of simplicity of frequency ra-
tios on the perception of pure and complex tones for pat-
terns involving sequential as well as simultaneous inter-
vals. Ratio simplicity accounted for judgments of both
consonance and similarity across a wide range of tasks
and listeners. It also accounted for the ability of listeners
to distinguish one tone sequence from another, whether
they were musically experienced adults or 9-month-oid
infants. These findings are consistent with the hypothe-
sis that tones related by sitnple frequency ratios are pro-
cessed more readily than tones related by more complex
ratios.
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Our finding that ratio simplicity affects perception
across tasks, listeners, and contexts is inconsistent with
the prevailing view that the relation between simple fre-
quency ratios and auditory pattern processing is a prod-
uct of enculturation (e.g., Burns & Ward, 1982; Dowl-
ing & Harwood, 1986). Closer inspection of this literature
reveals, however, that the likely source of the apparent
discrepancies is methodological. Although Plomp and
Levelt (1965) reported no effects of ratio simplicity on
judgments of consonance (simultaneous pute tones), their
exclusion of common, familiar (consonant) intervals re-
sulted in the absence of stimuli with simple frequency ra-
tios, obscuring potential effects of ratio simplicity.
Kameoka and Kuriyagawa (1969a), who found very small
peaks in consonance judgments for simple frequency ra-
tios, had listeners compare intervals with a very narrow
range of consonance (i.e., ratio simplicity) differences,
thereby minimizing the effects of ratio simplicity. Thus,
the findings of Plomp and Levelt and those of Kameoka
and Kuriyagawa reveal little about how simplicity of fre-
quency ratios, in general, relates to perceived consonance
and dissonance.

Anomaties in studies of intervallic sirnilarity (e.g., oc-
tave equivalence) may also have methodological origins,
especially the failure to find octave effects in adult listeners
(Allen, 1967; Kallman, 1982), given their presence in in-
fant listeners (Demany & Armand, 1984). The finding
that musically untrained adults based their judgments of
tone similarity solely on pitch distance may stem from
the use of a very wide pitch range (four octaves in Alien,
1967; 28 semitones in Kallman, 1982), which increased
the salience of pitch differences. Very high tones are ob-
viously unlike very low tones. Indeed, narrowing the pitch
range of intervals to be judged resulted in the emergence
of some effects of octave equivalence (Kallman, 1982).
Finally, Burns and Ward’s (1978) finding of the appar-
ent irrelevance of simple frequency ratios to perceptual
judgments may be attributable to the excessive difficulty
of their task. They asked musically untrained listeners to
identify which of two intervals was wider, raising the pos-
sibility that subjects who were unable to perform this
unusual task may have been able to differentiate the in-
tervals from one another. In fact, 2 of the 6 untrained
listeners had to be exclnded from the data analysis be-
cause they consistently judged the relative width of inter-
vals by the absolute pitch of their initial tone.

Despite the aforementioned failures to find effects of
ratio simplicity, the effects of simplicity on perceptual pro-
cessing are, by and large, pervasive. Definitive causal evi-
dence regarding the association between frequency ratios
and scale structure is still unavailable. Nevertheless, there
is a plausible dircction of influence despite the conten-
tion that the association is simply a coincidence (e.g.,
Dowling & Harwood. 1986)—a “‘remarkable’’ coinci-
dence, according to Aldwell and Schachter (1989, p. 26).
This coincidence has also been explained by the degree
of sensory consonance of simultaneous complex tones,
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for which the alignment of adjacent harmonics (and hence
frequency ratios) are a contributing factor (Burns & Ward,
1982). Thus, although processing advantages for simple
ratios could indeed influence scale structure, the univer-
sality of simple ratios in scales does not constitute defini-
tive evidence of such processing advantages.

Our primary objective, in the present review, was to
demonstrate that simplicity of frequency ratios provides
a parsimonious account of the available data on intervat
perception. We can offer no explanations—only specula-
tions—about why simple frequency ratios may confer pro-
cessing advantages for inexperienced as well as experi-
enced listeners.

A number of investigators (e.g., Boomsliter & Creel,
1961; Patterson, 1986; Roederer, 1973) maintain that
information in the temporal pattern of neural discharge
(specifically, similarity) provides the clue to interval
preferences and consonance. According to Moore (1989),
temporal firing patterns also could account for similari-
ties between individual tones related by simple frequency
ratios and for our inability to perceive melody or musi-
cal pitch at frequencies above 5000 Hz (Attneave & Ol-
son, 1971), where neural synchrony is not operative. This
general approach is compatible with the claim of inher-
ent ease of processing for tones related by simple fre-
quency ratios (Cohen et al., 1987; Schellenberg & Tre-
hub, in press; Trehub & Trainor, 1993).

The data presented in this paper are also consistent with
Terhardt’s (1974, 1978, 1984) contention that, from birth,
exposure to naturally occurring sounds (especially speech)
leads to familiarity with the intervals between audible
(lower) harmonics, which exemplify simple frequency ra-
tios (2:1, 3:2, 4:3, etc.). For this approach to be applica-
ble to the infant discrimination data, however, the requi-
site learning would have to occur in the early months of
life. Indeed, there is evidence of early recognition of the
mother’s voice (DeCasper & Fifer, 1980; Mehler, Ber-
toncini, Barriere, & Jassik-Gerschenfeld, 1978) and of
perceptual effects of language of exposure by 6 months
of age (Kuhl, Williams, Lacerda, Stevens, & Lindblom,
1992; Polka & Werker, 1994). Experiential effects such
as these could be considered to exemplify innately guided
learning (Gould & Marler, 1987), a process character-
ized by initial selectivity in responsiveness and rapid
learning.

It is tempting to describe simultaneous and sequential
tones with simple frequency ratios as exhibiting good
form, particularly in light of their apparent processing ad-
vantages. Although patterns of simultaneous tones may
meet conventional Gestalt (e.g., Koffka, 1935; Kéhler,
1947) criteria of phenomenal simplicity (e.g., sounding
simpler than tones with complex ratios, sounding fused
or *‘whole”’) or information-theoretic criteria of pattern
goodness (e.g., Garner, 1970, 1974; Pomerantz &
Kubovy, 1981), patterns of sequential tones do not (but
see Bartlett, 1993). Instead, such patterns meet a differ-
ent but equally stringent test of goodness—ease of pro-
cessing by naive listeners (Trehub & Trainor, 1993).

Tones related by simple frequency ratios may constitute
natural intervals or prototypes (Rosch, 1975), providing
a perceptual frame of reference for other intervals (Tre-
hub & Unyk, 1991). Their contribution to grouping pro-
cesses (Deutsch, 1982; McAdams, 1993) and to the anal-
ysis of complex auditory events or ‘‘scenes’’ (Bregman,
1990, 1993) remains to be determined.

REFERENCES

ALDWELL, E., & SCHACHTER, C. (1989). Harmony and voice leading
(2nd ed.). San Diego: Harcourt Brace Jovanovich.

ALLEN, D. (1967). Octave discriminability of musical and non-musical
subjects. Psychonomic Science, 7, 421-422.

ATTNEAVE, F., & OLsoN, R. K. (1971). Pitch as a medium: A new
approach to psychophysical scaling. American Journal of Psychol-
ogy, 84, 147-166.

BARTLETT, J. C. (1993). Tonal structure of melodies. In T. J. Tighe
& W. J. Dowling (Eds.), Psychology and music: The understanding
of melody and rhythm (pp. 39-61). Hillsdale, NJ: Erlbaum.

BHARUCHA, J. J., OLNEY, K. L., & SCHNURR, P. P. (1985). Detection
of coherence-disrupting and coherence-conferring alterations in text.
Memory & Cognition, 13, 573-578.

BHARUCHA, I. J., & PRYOR, J. H. (1986). Disrupting the isochrony under-
lying rhythm: An asymmetry in discrimination. Perception & Psycho-
physics, 40, 137-141.

BOOMSLITER, P., & CREEL, W. (1961). The long pattern hypothesis in
harmony and hearing. Journal of Music Theory, 5, 2-31.

BREGMAN, A. S. (1990). Auditory scene analysis. Cambridge, MA: MIT
Press.

BREGMAN, A. S. (1993). Auditory scene analysis: Hearing in complex
environments. In S. McAdams & E. Bigand (Eds.), Thinking in sound:
The cognitive psychology of human audition (pp. 10-36). Oxford: Ox-
ford University Press.

Burns, E. M., & Warp, W, D. (1978). Categorical perception—
phenomenon or epiphenomenon: Evidence from experiments in the
perception of melodic musical intervals. Journal of the Acoustical So-
ciety of America, 63, 456-468.

Burns, E. M., & Warp, W. D. (1982). Intervals, scales, and tuning.
In D. Deutsch (Ed.), The psychology of music (pp. 241-269). New
York: Academic Press.

BUTLER, J. W., & DastoN, P. G. (1968). Musical consonance as mu-
sical preference: A cross-cultural study. Journal of General Psychol-
ogy, 79, 129-142.

CHANG, H. W., & TREHUB, S. E. (1977). Auditory processing of rela-
tional information by young infants. Journal of Experimental Child
Psychology, 24, 324-331.

CoHEN, A.J., THORPE, L. A., & TReHUB, S. E. (1987). Infants’ per-
ception of musical relations in short transposed tone sequences. Cana-
dian Journal of Psychology, 41, 33-47.

DECASPER, A. J., & FiFer, W. P. (1980). Of human bonding: New-
borns prefer their mothers’ voices. Science, 208, 1174-1176.

DEMANY, L., & ARMAND, F. (1984). The perceptual reality of tone
chroma in early infancy. Journal of the Acoustical Society of America,
76, 57-66.

DEUTSCH, D. (1982). Grouping mechanisms in music. In D. Deutsch
(Ed.), The psychology of music (pp. 99-134). New York: Academic
Press.

DowLING, W. J., & HARwOOD, D. L. (1986). Music cognition. San
Diego: Academic Press.

FERLAND, M. B., & MENDELSON, M. J. (1989). Infants’ categoriza-
tion of melodic contour. Infant Behavior & Development, 12, 341-355.

GARNER, W. R. (1970). Good patterns have few alternatives. Ameri-
can Scientist, 58, 34-42.

GARNER, W. R. (1974). The processing of information and structure.
Hillsdale, NJ: Erlbaum.

GoulLp, I. L., &« MARLER, P. (1987). Learning by instinct. Scientific
American, 256, 74-85.



Guernsey, M. (1928) The role of consonance and dissonance tn music.
Amenican Journal of Psychology, 40, 173-204.

Hermuortz, H. L. F vox (1954) Ow the sensotions of tone as a phys-
iological basis for the theory of music (rev. ed., A T Ellis, Ed. and
Trans.). New York: Dover (Onginal work published 1885)

HuroN, D., & SELIMER, P. (1992). Critical bands and the spelling of
vertical sononties. Music Perception, 10, 129-150.

HurcHINsON, W | & KnoPOFF, L. (1978) The acoustic component of
Western consonance. Interface, 7, 1-29

Kareman, H 1. (1982). Octave equivalence as measured by similarity
ratings. Percepnon & Psvchophysics, 32, 37-49.

KameokA, A., & KURIYAGAWA, M. (19692) Consonance theory: Part 1
Consonance of dyads. Journal of the Acousncal Society of America,
45, 1451-1459

KaMeokA, A., & Kurivacawa, M (1969b). Consonance theory.
Pant 1I. Consonance of complex tones and its calculabon method. Jour-
nal of the Acousncal Society of America, 45, 1460-1469

Koreka, K. (1935). Principles of Gestalt psychology. London: Rowt-
ledge & Kegan Paul.

KoHLer, W. (1947). Gestait psychology. An introduction to new con-
cepts of modern psychology. New York: Livenght.

KrumHANSL, C. L. (1979). The psychological representation of musi-
cal pitch m a tonal context. Cognittve Psychology, 11, 346-374.
KrumHansL, C L (1990). Cognitive foundanons of musical pitch New

York: Oxford Umiversity Press.

KrumransL, C. L.. & KessLer, E. J. (1982). Tracing the dynamic
changes 1n perceived tonal organization in a spatial representation of
musical keys. Psychological Review, 89, 334-368.

KunL, P. K., WiLuiams, K. A., LACERDA, F., STEVENS, K. N,, & Linp-
sLoM, B, (1992) Lingustic experience alters phonetic perception in
infants by 6 months of age. Science, 255, 606-608.

LERDAHL, F., & JACKENDOFF, R. (1983). A generative theory of tonal
mustc. Cambridge, MA: MIT Press.

Levert, W. J. M., van pe GEER, J. P., & PLomP, R, (1966). Triadic
comparisons of musical intervals. British Jourral of Mathematical &
Statistical Psychology, 19, 163-179.

MarmeerG, C. F. (1918). The perception of consonance and dissonance.
Psychological Monographs, 25, 93-133

McApams, S. (1993). Recognition of sound sources and events. In
S. McAdams & E. Bigand {Eds.), Thinking in sound. The cogntive
psychology of human audition (pp. 146-198). Oxford: Oxford Uni-
versity Press. .

MEHLER, J., BERTONCINI, J., BARRIERE, M., & JAsStx-GERSCHENFELD, D.
(1978) Infant recogmtion of mother’s voice. Perception, 7, 491-497.

MEYER, L. B. (1956). Emotion and meaning in music. Chicago® Uni-
versity of Chicago Press.

Moore, B. C 1. (1989). Anr introduction to the psvchology of hearing
(3rd ed.). London Academuc Press

NarMOUR, E. (1990). The analysis and cognition of basic melodic struc-
tures. The implication-realizanon model. Chicago: Umversity of
Chicago Press.

NarmoUr, E. (1992). The analysis and cogmition of melodic complex-
ity The implication-realizaton model. Chicago: University of Chicago
Press.

PAaTTERSON, R. D. (1986} Spiral detection of periodicity and the sprral
form of musical scales. Psychology of Music, 14, 44-61.

Promp, R {1964). The ear as a frequency analyzer Jowrnal of the
Acoustical Sectens of Amenica, 36, 1628-1636,

Prome, R., & LEveLT, W. 1. M. (1965). Tonal consonance and critical
bandwidth Jfourna! of the Acousncal Seciety of America, 38, 548-560.

Poika, L., # Werker,J F {1994). Developmental changes in the per-
ception of nonnative vowel contrasts. Journal of Experimental Psy-
chology: Human Perception & Performance, 20, 421-435.

PomERANTZ, J R, & KUuBovy, M. {1981) Perceptual orgamzation:
An overview. In M. Kubovy & J. R. Pomerantz (Eds.), Perceptunl
organization (pp 423-456). Hillsdale, NJ Erlbaum.

PERCEPTION OF FREQUENCY RATIOS 201

Rakowski, A (1990} Intonation variants of musical intervals in 1s0la-
uon and in musical contexts. Psvchology of Music, 18, 68-72

Rameav, I P (1971). Treatise on harmorry (P. Gosseth, Trans.). New
York Dover (Original work published 1722)

ROEDERER, J. (1973} Introduction 10 the physics and psvehophysics of
music Berlin: Spninger-Verlag.

RoscH, E. (1975). Cogmitive reference points. Cognutive Psvchology,
7. 532-547.

SacHs, C. (1943) The nise of music in the ancient world East and West
New York. Norton.

ScHELLENBERG, E. G. (1994). Effects of frequency rato simplicity on
the perception of tone patterns. Unpublished doctoral dissertation, Cor-
nell University, Ithaca, NY.

ScHELLENBERG, E G., & TREHUB, §. E. (in press). Frequency rattos
and the discrimination of pure tone sequences, Perception & Psycho-
physics.

SHEPARD, R N. (1964). Circuiarity in judgments of relative prtch Jour-
ral of the Acoustical Sociery of America, 36, 2346-2353,

TeraaroT, E. (1974) Pitch, consonance, and harmony. Journal of the
Acoustical Sociery of America, 55, 1061-1069.

TERHARDT, E. (1978). Psychoacoustic evaleation of musical sounds.
Perception & Psychophysics, 23, 483-492.

TeruARDT, E. (1984). The concept of musical consonance: A link be-
tween mustc and psychoacoustics. Muste Perception, 1, 276-295.
Tramor, L. . (1991). The origins of musical partern perception: A
comparison of ifants’ and aduits’ processing of melody. Unpublished

doctoral dissertation, University of Toronto.

Travor, L J., & Trenus, §. E. (1993a). Musical context effects in
infants and adults: Key distance. Journal of Experimental Psychoi-
ogy: Human Perceprion & Performance, 19, 613-626.

TramNOR, L 1., & TREHUSB, $. E. (1993b). What mediates infants’ and
adults’ superior processing of the major over the augmented triad?
Music Percepion, 11, 185-196.

TrEHUE, 8. E., BuLt, D., & THoReE, L. A. (1984). Infants’ percep-
tion of melodies: The role of melodic contour. Child Development,
55, 821-830.

Trenue, S. E., Thoreg, L A., & MORRONGIELLO, B. A. (1985). In-
fants” perception of melodies: Changes m a single tone. infant Be-
kavior & Development, 8, 213-223.

Trenus, S E., THorPE, L A., & MoRRONGIELLO, B A. (1987). Or-
ganizabional processes in infants’ perception of auditory patterns. Child
Development, 58, 741-749.

TREHUB, 5. E., THORPE, L. A , & TRAINOR, L. J, (1990) Infants’ per-
ception of good and bad melodes. Psychomusicology, 9, 5-15

TReHUR, § E., & Tramnogr, L. I. (1993). Listening strategies 1n in-
fancy The roots of language and musical development. In
S. McAdams & E Bigand (Eds.), Thinking in sound. Cogninve per-
spectives on human audition (pp. 278-327). London: Oxford Univer-
sity Press

TREHUB, 8. E., & Unvk, A. M. (199]). Music prototypes in develop-
mental perspective. Psychomusicology, 18, 31-45.

vAN DE GEER, J. P, LEvELT, W. J. M., & PLOMP, R. (1962). The con-
notaton of musical consonance. Acta Psvchologica, 20, 308-319.

Warp, W. D. (1970). Musical perception. In 1. Tobias (Ed.), Founda-
nons of modern auditory theory (Vol. L., pp. 407-447). New York:
Academic Press

NOTE

1 The subscnpts denote the octave from which the tone is drawn.
C. is middle C, C,, then, 15 three octaves below middle C.
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